Identification of eIF2Bgamma and eIF2gamma as cofactors of hepatitis C virus internal ribosome entry site-mediated translation using a functional genomics approach.
نویسندگان
چکیده
The 5'-untranslated region of hepatitis C virus (HCV) is highly conserved, folds into a complex secondary structure, and functions as an internal ribosome entry site (IRES) to initiate translation of HCV proteins. We have developed a selection system based on a randomized hairpin ribozyme gene library to identify cellular factors involved in HCV IRES function. A retroviral vector ribozyme library with randomized target recognition sequences was introduced into HeLa cells, stably expressing a bicistronic construct encoding the hygromycin B phosphotransferase gene and the herpes simplex virus thymidine kinase gene (HSV-tk). Translation of the HSV-tk gene was mediated by the HCV IRES. Cells expressing ribozymes that inhibit HCV IRES-mediated translation of HSV-tk were selected via their resistance to both ganciclovir and hygromycin B. Two ribozymes reproducibly conferred the ganciclovir-resistant phenotype and were shown to inhibit IRES-mediated translation of HCV core protein but did not inhibit cap-dependent protein translation or cell growth. The functional targets of these ribozymes were identified as the gamma subunits of human eukaryotic initiation factors 2B (eIF2Bgamma) and 2 (eIF2gamma), respectively. The involvement of eIF2Bgamma and eIF2gamma in HCV IRES-mediated translation was further validated by ribozymes directed against additional sites within the mRNAs of these genes. In addition to leading to the identification of cellular IRES cofactors, ribozymes obtained from this cellular selection system could be directly used to specifically inhibit HCV viral translation, thereby facilitating the development of new antiviral strategies for HCV infection.
منابع مشابه
A peptide derived from RNA recognition motif 2 of human la protein binds to hepatitis C virus internal ribosome entry site, prevents ribosomal assembly, and inhibits internal initiation of translation.
Human La protein is known to interact with hepatitis C virus (HCV) internal ribosome entry site (IRES) and stimulate translation. Previously, we demonstrated that mutations within HCV SL IV lead to reduced binding to La-RNA recognition motif 2 (RRM2) and drastically affect HCV IRES-mediated translation. Also, the binding of La protein to SL IV of HCV IRES was shown to impart conformational alte...
متن کاملThe hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold.
Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) located in the 5' untranslated region of the genomic RNA that drives cap-independent initiation of translation of the viral message. The approximate secondary structure and minimum functional length of the HCV IRES are known, and extensive mutagenesis has established that nearly all secondary structural domains are critical...
متن کاملEnhancement of internal ribosome entry site-mediated translation and replication of hepatitis C virus by PD98059.
Translation initiation of hepatitis C virus (HCV) occurs in an internal ribosome entry site (IRES)-dependent manner. We found that HCV IRES-dependent protein synthesis is enhanced by PD98059, an inhibitor of the extracellular signal-regulated kinase (ERK) signaling pathway, while cellular cap-dependent translation was relatively unaffected by the compound. Treatment of cells with PD98059 allowe...
متن کاملHepatitis C virus internal ribosome entry site-dependent translation in Saccharomyces cerevisiae is independent of polypyrimidine tract-binding protein, poly(rC)-binding protein 2, and La protein.
Translation initiation of some viral and cellular mRNAs occurs by ribosome binding to an internal ribosome entry site (IRES). Internal initiation mediated by the hepatitis C virus (HCV) IRES in Saccharomyces cerevisiae was shown by translation of the second open reading frame in a bicistronic mRNA. Introduction of a single base change in the HCV IRES, known to abrogate internal initiation in ma...
متن کاملLa autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro.
Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5' untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 15 شماره
صفحات -
تاریخ انتشار 2000